
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2013 1
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Abstract—Visual object tracking methods can be roughly cat-
egorized into generative method or discriminative method.Each
of the two methods has its advantages and negative factors which
may result in occlusion or drifting problems. In order to deal with
the occlusion and drifting problem better, we combine the two
different methods together by the occlusion information, which is
obtained from an occlusion detection mechanism. In this paper,
first, we propose a novel mechanism which can predict occlusion
accurately and sensitively with MIL and SVM classifiers. Second,
we combine the discriminative method and the generative method
in a joint-probability model and use the occlusion information to
adjust the weights of the methods, which are complementary.
Third, we propose a classified template updating method, in
which we divide the templates into two groups according to
occlusion information and use opposite probability distribution
to update the two groups. The experiment results of our tracker
on several challenging datasets demostrate that our approaches
is effective and outperforms the state-of-the-art approaches.

Index Terms—visual object tracking, occlusion prediction,
template update, joint probability.

I. I NTRODUCTION

V ISUAL object tracking is a basic task in computer vision.
Many computer vision applications, such as vehicle

navigation, video surveillance and automatic drive, cannot
work without visual object tracking. Visual object tracking re-
mains challenging, however, despite the considerable progress
made in recent years, because of destabilising factors such
as illumination and scale changes, complicated background,
occlusions and pose changes in the video sequence. Occlusion
and drifting problems are the core issues, and have not been
fully resolved as yet.

Visual object tracking methods can be roughly divided into
two categories: the discriminative method, which is imple-
mented with classifiers, and the generative method, which
aims to find the most similar regions. Discriminative methods
classify the target object from the background to achieve the
tracking procedure. Grabner and colleagues [1] proposed an
on-line AdaBoost selection method for complex background
models which exploits information on the background. Avidan
[2] cast the tracking problem as a binary classification problem
by combining a number of weak classifiers into a strong one,
which is trained on-line to distinguish the object and the
background by means of labelled pixels in the next frame.
Later, Grabner and colleagues [3] upgraded the boosting
method to an on-line semi-supervised boosting method to
alleviate the drifting problem. They combined a given prior
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and an on-line classifier to do the tracking. In order to
train the dataset more accurately, Babenko and colleagues [4]
used multiple instance learning (MIL) instead of traditional
supervised learning methods. With MIL, the training samples
can be labelled more precisely, which can alleviate the drifting
problem. In [5], Kalal and colleagues trained a binary classifier
by means of labelled and unlabelled examples. They trained
the classifier on the labelled data and improved it with the
unlabelled data.

Generative methods hold the features by maintaining a
template set, which is used to find the target object in the next
frame, to do visual tracking. The templates can be used with
pixel or patch format. Adam and colleagues [6] used arbitrary
patches, which were not based on the object model, to repre-
sent the template object, and each patch voted on the possible
positions and scales of the object, which were implemented
with an integral histogram data structure [7]. Kwon and col-
leagues [8] decomposed the observation model into multiple
basic observation models by sparse principal component anal-
ysis (SPCA). Each basic observation model covers a specific
appearance of the object. Then spare presentation is used in
visual tracking. Liu and colleagues [9] proposed a local sparse
appearance model and sparse regularized mean-shift to do the
tracking. The sparse dictionary is static, however, which may
lead to a drifting problem. Wang and colleagues [10] proposed
a tracking method from the perspective of mid-level vision
with structural information captured in superpixels. Subse-
quently, they used a discriminative appearance model basedon
the superpixels to distinguish the target and the background.
Besides the improvements in representation models, modelling
methods also developed rapidly. Ross and colleagues [11]
presented a tracking method that incrementally learns a low-
dimensional subspace representation, which is adapted to the
changes of the target appearance. To this end, an incremental
algorithm for principal component analysis is implemented
to deal with heavy changes in pose, scale, and illumination.
Mei and Ling [12] cast tracking as a sparse approximation
problem. The target candidate is sparsely represented by target
templates and trivial templates, and the sparsity is achieved
by solving anℓ1-regularized least squares problem. Another
ℓ1 tracker with minimum error bound and occlusion detection
is proposed in [13]. The minimum error bound is calculated
by a linear least squares equation and then serves as a guide
for particle resampling in a particle filter framework; the
occlusions are detected by investigating the trivial coefficients
in the ℓ1 minimization. Jia and colleagues [14] developed a
robust tracking method based on the structural local sparse
appearance model by applying an alignment-pooling method
to exploit partial information and spatial information of the
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target to handle occlusion. Although the above methods have
made great progress in terms of object tracking, some serious
problems have not been solved completely.

When partial or complete occlusion occurs, the tracker can
use part of the target appearance and the occlusion information
to find the best candidate bounding box. When the occlusion
disappears, the tracker should avoid the influence of the
occlusion and find the right target. In this paper, we proposean
occlusion prediction mechanism with MIL and SVM methods.
The observation of the target is sampled by patch, and we
have trained the MIL classifier only on the templates without
occlusion, to guarantee the accuracy of the occlusion ratio.
Additionally, we present a joint probability model of the
discriminative and generative methods to solve the occlusion
and drifting problem. An occlusion ratio is exploited to adjust
the weights of the two methods. The generative method
is implemented with a local structural sparse representation
model [14], solved byℓ1 minimization. The discriminative
method uses MIL&SVM [15] as a classifier to locate the target
from the background. Finally, we design a novel template
updating method, which uses the occlusion information to
update templates dynamically.

Summarily, our main contribution in this paper is threefold.
The first contribution is developing a new prediction mechanis-
m, which can predict occlusion precisely. The second contri-
bution is combining the generative and discriminative methods
in a joint probability model, which can handle the drift and
occlusion problems effectively. This joint probability model
is implemented with the distribution of positive and negative
patches with the MIL classifier and the spare representation
result from the template matching. The joint probability model
can help us to locate the object more accurately. The third con-
tribution is proposing a better template update method, which
divides the templates into two groups according to occlusion
information and updates them with different mechanisms. We
can see the three pivotal stage pre-occlusion, occlusion and
occlusion disappearing in Fig. 1 which shows the occlusion
and drifting problems.

The rest of this paper is organized as follows. Section II is
a short review of related research. Section III describes our
occlusion detection method. Section IV introduces our joint
probability model. Section V discusses our template update
mechanism with occlusion information. Section VI shows the
experimental details and results. Section VII concludes.

II. RELATED WORK

Sparse representation has natural advantages in visual cat-
egorization. Many works have been done to improve the
performance of visual tracking based on sparse representation
[9, 12, 13, 16]. Mei and Ling [12] exploited target templates
and trivial templates to represent the candidate target with
sparse coefficients. The sparsity is achieved by solving an
ℓ1-regularized least squares problem. With trivial templates, s-
parse representation can handle the occlusion problem. Jiaand
colleagues [14] proposed a structural local sparse appearance
model, which can exploit the spatial information of the target
with an alignment-pooling method. Additionally, they com-
bined incremental subspace learning and sparse representation

−−−VTD

Pre−occlusion Occlusion disappearingOcclusion

−−−FRAG −−−MIL −−−OURS

Fig. 1. Examples of occlusion tracking results. The first rowis from dataset
faceocc1 [6], and the second one is from dataset faceocc2 [6]. The numbers in
red at the top left are frame numbers. The left, middle and right pictures cor-
respond to the pre-occlusion case, occlusion case and occlusion disappearing
case, respectively. The results of four trackers (FRAG[6],VTD[8], MIL[4]
and ours) are shown by bounding boxes in different colors. The red bounding
boxes are the results of our tracker. We can see that our tracker can locate
the target accurately when severe occlusion happens and is not influenced by
occlusion after it disappears.

to update the template to alleviate the influence of occlusion
and the probability of drifting. Thus, sparse representation with
a local structure can handle occlusion well, although it may
be influenced by the occlusion information from the occluded
templates.

Discriminative methods are also widely used for visual
tracking [2–5] which exploit a trained classifier to classify
the target from the background and focus on the differences
between the target and the background. Babenko and col-
leagues [4] trained a classifier with MIL. The MIL method
uses bags, which are composed of unlabelled instances. Bags
which include one or more positive instances are labelled as
positive bags. In contrast, bags which only contain negative
instances are labelled as negative bags. In visual object track-
ing, a rectangular bounding box is commonly used to locate
the target object, but the bounding box may also contain
the background area, for the object may not be a standard
rectangle and cannot fill the entire bounding box area. Hence,
the patch sampling from the bounding box may also from
part of the background. To deal with this problem, we can
use MIL, in which the patches are treated as instances and a
group of patches can be regarded as a bag. Thus, the MIL can
train the classifier more precisely. Andrews and colleagues
[15] cast the MIL problem as a maximum margin problem,
which is solved by the support vector machine (SVM) learning
approach. Here, we use the MIL&SVM classifier in a new
format with image patches, which can accurately classify the
target from the background. What is more, it can alleviate the
influence of the background noise in the target bounding box.

The combination of discriminative and generative meth-
ods was proposed in [17], Zhong and colleagues devised a
sparsity-based collaborative model to integrate the advantages
of holistic discriminative and local generative modules for
better results. They put the two methods together directly,
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however, whereas ours is combined with occlusion information
and the weights of the methods can be dynamically adjusted
according to the degree of occlusion. Occlusion information
has been specially used for tracking [13, 18, 19]. In [13],
Mei and colleagues proposed an occlusion detection method
using an efficientℓ1 tracker with minimum error bound. They
detected the occlusions by investigating the trivial coefficients
in theℓ1 minimization. However, they performed tracking and
occlusion detection with the same features and method, which
are relevant to each other, as leads to no further information
was obtained from the results. In the proposed algorithm, we
implement the two works with different methods on different
samples to exploit more information in different aspects.

III. O CCLUSION PREDICTION METHOD

Occlusion happens when a near object obscures the target
object and the complete appearance of the target object cannot
be obtained from the two-dimensional image, e.g., the target
object region is filled by the pixels of other objects in the
picture. In essence, occlusion happens when the pixels around
the target bounding box move into the bounding box region.
In the visual tracking process, we regard the target object
as foreground and other regions as the background. When
the background around the foreground appears in the target
object area, occlusion occurs in the frame sequence as shown
in Fig. 2. Therefore, we can check the foreground region to
find out whether it contains the surrounding background to
predict occlusion. In order to detect the background, samples
should be taken from both foreground and background. In the
following paragraph, we introduce the sampling method in
detail.

Fig. 2. An illustration of the occurrence of occlusion, where the two figures
are picked from dataset Caviar3 [20]. The left picture is frame 11 and the
second one is frame 75. Red bounding boxes are used to label the foreground
region which contains the target object. We can see that the background around
the foreground, which is marked with pink shadows, enters into the foreground
area in the second picture and occlusion happens. As we know,occlusion is
a gradual process and obstructions must come from the surrounding of the
target object in the previous frames if the occlusion happens. Therefore, we
can detect occlusion by detecting whether the surrounding backgrounds enter
the bounding box.

We use a patch that covers a small rectangular image region
with dozens of pixels as the sampling unit. The patch retains
the local structure features of the object. It also carries extra
details about the relative position of the individual pixels.
Hence, patches have more features than isolated pixels. In

Fig. 3. An illustration of the sampling and labelling method; the picture comes
from the Caviar3 dataset. The target object is located by a big red bounding
box, which is also called as foreground. We use the patch as the sampling
unit, which is shown as the smallest grid. The patches shouldoverlap, as
shown in the first row of the foreground area with yellow and blue patches.
The foreground and the surrounding background should both be sampled.
The foreground patches are regarded as positive samples andthe background
patches are regarded as negative samples, which are marked as green boxes.
One row patches are exploited as the labelling unit instance, which uses the
idea of MIL.

addition, the patch is more stable than pixels in terms of
the representation of certain features. The sampling patches
should overlap, i.e., the sampling step should be smaller
than the length of the patch, to maintain the relationship
between the neighboring patches. Overlapping patches can
avoid sampling incomplete local object part. In other words,
overlapping patches have a greater probability of covering
a complete local part of the object in one patch other than
dividing a local structure into several patches. We set the
sampling step as half of the patch length and obtain satisfying
results. In the generative method, the sampling patches can
be used as the templates to compose a sparse dictionary,
which is used to represent the candidate bounding box with
patches to obtain the sparse coefficients. In the discriminative
methods, sampling patches are used to train a classifier, which
is used to distinguish the foreground from the background.
The foreground is labelled as the positive sample and the
background is labelled as the negative sample. There is a
problem to be solved before labelling the patches, however:
not all patches in the target bounding box region are on the
target object because the bounding box is rectangular whereas
the shape of the target object may not be a standard rectangle.
The patches in the bounding box region should be trained as
a positive sample, but some patches of the bounding box are
background area which can be noise for the training of positive
sample.

The multiple instance learning method is trained with in-
stances, which are included in the bags. A bag is labelled as a
positive sample if it includes at least one positive instance, and
a negative sample only includes negative instances. According-
ly, in our method, we regard the image patch as the instance,
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and a group of patches as a bag. Generally, the height of the
target bounding box equals that of the target object, to ensure
that each row of the patches in the bounding box covers part of
the object, i.e., one row of patches includes at least one patch
of the target object other than the noise of the background.
We treat one row of patches as a bag in order to ensure the
property that a row patches in the bounding box includes at
least one positive patch, which does not contains noise of the
background. Hence, we can ensure all the bags sampled from
the bounding box are positive samples.

We also sample negative bags in the background around
the foreground, as shown in Fig. 3. A distance parameterR,
which measures the distance from the center-point of the target
object to the edge of the negative sampling area, is used to set
the range of the negative patch sampling area. We can adjust
the sampling area in the background. In order to maintain the
consistency, the negative samples are also grouped by a bag,
which includes a row of patches. Here, we denote the positive
patch, negative patch, positive bag and negative bag byp+,
p−, b+ andb−, respectively.

After we obtain positive and negative samples, we use an
SVM(Support Vector Machine) to train the samples and obtain
the classifier. With this classifier, we can classify each patch
of a candidate bounding box. The patches of a candidate
bounding box are stored in a patch matrixPM,N , whereM
is the row number of the patches andN the number of patch
columns. Each patch can be classified as a positive sample,
which means it belongs to the target object or as a negative
sample, which means background area around the foreground.
As each patchpm,n of P corresponds to a classification result
rm,n, we obtain the result matrixRM,N . Then, we use Eq. (1)
to detect occlusions.

Oratio =
|p−|

MN
. (1)

In Eq. (1),|p−| is the number of negative patches andMN
is the total patch number.Oratio is the occlusion ratio which
reflects the degree of occlusion. More importantly, we can
obtain the occlusion position in the bounding box for each
patch in the bounding box is matched to a classification result
in R with the same position. We can check the distribution of
the negative patches and find the specific occlusion location.

We train the classifier only with the frames without oc-
clusion or with light occlusion. At the beginning, the initial
frames are exploited to train the classifier and then the classi-
fier selects the templates to do training which depends on the
occlusion ratio. With these unoccluded templates, the classifier
remains accurate even after occlusions as can alleviate the
drifting problem significantly.

IV. JOINT PROBABILITY MODEL

The procedure for visual object tracking is to use the
previous template setT1:t−1, which can be initial bounding
boxes or boxes of tracking results, to find the position of the
target object in the current frame t. In the initial stage, the
tracker extracts features from the template bounding box area
or around the bounding box area. In the tracking stage, the
tracker selects the most similar bounding box regionb̂ from a

candidate bounding box setB as the tracking result. Candidate
setB is generated in the current frame by random sampling
around location of the latest tracking results. In each frame,
one same action is done: the known information fromT1:t−1

is used to find the most similar bounding box object regionb̂t
in the current framet. The tracking result is formulated as:

b̂t = argmin
bi
t
∈Bt

∥

∥F (T1:t−1)− F (bit)
∥

∥ , (2)

whereBt is the candidate bounding box set in the current
frame t and bit is the i-th candidate bounding box region in
Bt. N is the number of samples, andi ∈ {1, 2 · · · ,N}. In
the random sampling procedure to obtainBt, the velocity of
the target object can be used to predict the central position
of the sampling area, and the number of samplesN can be
set experimentally, which is a balance between efficiency and
accuracy.T1:t−1 includes the target bounding box regions in
the previous frames, which can be initial frames or frames
of the tracking results.F (X ) is a measure function, which
obtains the feature of a bounding box area setX , andX 6= ∅.
The tracking result̂bt is obtained by minimizing the feature
distance ofF between regions of template setT1:t−1 and
regions of set{bit}. FunctionF can be implemented with
two different methods: one is the generative method, which
extracts the features fromT1:t−1, then uses the features to
find the most similar bounding box areâbt in frame t; the
other is the discriminative method, which uses the dataT1:t−1

to train a classifier. The classifier can classify an image patch
in the bounding box regionbit as the target object area or
background area and the bounding box with the most object
patches is selected as the tracking result. In our algorithm, the
two methods are combined together for tracking.

In order to exploit the advantage of the two different
methods, we fuse the two methods with a joint probability
model, which applies probability to measure the similarity
betweenF (T1: t−1) andF (bit). In the feature extraction stage,
we divide the target region into overlapping patches and use
patch as the basic unit to represent the features of the picture.
Thus the set theory can be used to simplify the formulas. We
obtain the probabilityP (bit|T1:t−1) of bit being the most similar
candidate bounding box toT1:t−1 by

P (bit|T1:t−1) =
Ssimilar

Stotal
,

=
|F (bit) ∩ F (T1:t−1)|

|F (T1:t−1)|
,

(3)

whereSsimilar denotes similar area,Stotal the total foreground
area,|F (bit) ∩ F (T1:t−1)| the number of similar patches and
|F (T1:t−1)| the total patch number. We use the ratio of the
two area sizes as the probability. In addition,|F (T1:t−1)| is a
determined non-zero value. With Eq. (2) and Eq. (3), we can
obtain

F (T1:t−1)− F (bit) = F (T1:t−1)− F (bit) ∩ F (T1:t−1),

∝
F (T1:t−1)

F (T1:t−1)
−

F (bit) ∩ F (T1:t−1)

F (T1:t−1)
,

= 1− P (bit|T1:t−1)).

(4)

Thus, Eq. (2) can be written as:
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b̂t = argmin
bi
t
∈Bt

(1− P (bit|T1:t−1)),

= argmax
bi
t
∈Bt

P (bit|T1:t−1).
(5)

It is proved that Eq. (2) and Eq. (5) can obtain the sameb̂t. And
the joint probability can be written asP (bit|T

G
1:t−1, T

D
1:t−1),

whereT G
1:t−1 stands for the features obtained by the genera-

tive methods andT D
1:t−1 stands for the features obtained by

discriminative methods fromT1:t−1. The generative methods
useT1:t−1 to hold the features of the target object and change
the features according to the change of the target object by
dynamical template updating. When occlusion happens, the
best candidate bounding box can be represented by unoccluded
and occluded templates. The variation of the target object
itself, however, especially the occlusion, may mislead the
templates, which will result in a drifting problem. Here, we
use the discriminative method to deal with this problem.
Discriminative methods focus on classifying the bounding box
as target object area from the background. That is, they not
only use the feature of the target in the bounding box, but
also use the information of the background. Additionally, in
our method, the discriminative method only uses the templates
without occlusion to train the classifier, which ensures that
the classifier is not affected by occlusion. Therefore, the two
different methods are complementary. To this end, we define
the fused probability as

P (bit|T
G
1:t−1, T

D
1:t−1) = (1 − α)P (bit|T

G
1:t−1) + αP (bit|T

D
1:t−1).

(6)
whereP (bit|T

G
1:t−1, T

D
1:t−1), the joint probability, is the weight-

ed sum of the discriminative method and generative method,
andα ∈ [0, 1] is the control parameter, which can adjust the
weights of the two methods. With this joint probability, we can
easily assign a bigger weight to the more suitable method fora
special case. We assign a greater weight to the discriminative
features when the target object area is discriminative fromthe
background, and assign a greater weight to the generative fea-
tures when the target object area is similar to the background.
Hence, we can evaluate the two features and assign a greater
weight to the more discriminative features before the tracking
step. That means the tracking result depends on the more
distinguishable features. Furthermore, the joint probability
model can be used to handle occlusion and drifting problems.
In ordinary cases without occlusion, the two methods can both
track the target object accurately. Therefore, the parameterα is
set near0.5. When occlusion occurs, we can use the occlusion
prediction information to adjust the weights and guide the
template updating mechanism, as explained in the following
paragraph.

The core idea of the combination methods is that the
generative method uses all the templates and the discriminative
method only uses the templates without occlusion, which is an
implement based on the occlusion detection results. Here, the
generative method is implemented with a local structure sparse
representation [14], which can track the target accuratelyeven
when occlusion occurs as the template set contains occluded
templates that are used to represent the occluded target. Inthis

case, the weight of the discriminative methodα will reduce
to a smaller value via the occlusion ratioOratio, which is
obtained by means of the occlusion detection mechanism.
When the occlusion disappears, the generative method may
still use the templates with occlusion to represent the target,
which may result in the drifting problem. In this case, the
weight of the discriminative methodα will increase to a
larger value through the occlusion ratioOratio obtained by the
occlusion detection. Since the discriminative method is trained
only with the templates without occlusion, it can track the
target accurately when the occlusion disappears. In conclusion,
the weight of the discriminative methodα is proportional to
the occlusion ratioOratio, i.e.,

α ∝ Oratio. (7)

WhenOratio is close to zero, the two methods get the same
weight andα is set to0.5. When the object is heavily occluded,
i.e., Oratio is close to one,α should be set to one. So, we
defineα as

α =
1

2
(1 +Oratio). (8)

With dynamic adjustment of the weights, the generative
method can track the target along the occlusion and the
discriminative method track the target when the occlusion is
disappearing. The discriminative method holds the real feature
of the target without any occlusion, which can tell us when the
occlusion appears or disappears so we can adjust the weights
of the two methods to prevent drifting problems.

The generative method is implemented with adaptive struc-
tural local sparse appearance model proposed in [14], in which
each patch of the target object region can be represented by the
corresponding patches of the templates. Withℓ1 sparse mini-
mization, we obtain the sparse coefficientsA = [a1, · · · , an]
ai ∈ [0, 1] for each patch. The value ofai indicates the
similarity between the templates and the target object. And
we can use this value as the probability of a patch being in
the target region. Thus, the probability can be written as

P (bjt |T
G
1:t−1) = ai, (9)

whereai is the mean of all the coefficients.
We use MIL&SVM [15] as the classifier to implement the

discriminative methods given that the region in the bounding
box contains the background area in the edge of the bounding.
Hence, not all the patches in the bounding box are posi-
tive samples, which contain the feature of the target object.
Multiple instance learning can handle this situation well.In
our method, we also use patch as the unit for training. The
difference is that we sampling both in the bounding box region
and the regions around the bounding box. The patches in
the bounding box are labelled as positive samples and those
around the bounding box are labelled as negative samples. The
aim of this method is to classify the patches in the current
bounding box into positive or negative patches. We select the
bounding box with the largest positive patches number as the
tracking result. Accordingly, the probability of a bounding box
being the tracking result can be defined as

P (bjt |T
D
1:t−1) =

|p+|

|p−|+ |p+|
, (10)
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where|p+| is the number of positive patches, and|p−| is the
negative patch number. Eq. 10 indicates that a bounding box
with more positive patches is more likely to be an accurate
tracking result. The procedure of our joint tracking is described
in algorithm 1.

Algorithm 1 Joint Tracking
Input:

The t-th frame ft, templatesTt−1 = {f1, ...fK}, K is
the number of templates. Number of samplesN , sample
radiusR, sampling patch size(m1,m2)

Output:
Tracking result̂bt, the updated templates setTt

1: Sample uniformly on the search area with radiusR to get
the candidate setBt = {bit}, i ∈ [1, ...,N ];

2: For each candidatebit, cut the bounding box area to
patches to do classification and getOi

ratio of them via
Eq. (1) with occlusion prediction mechanism;

3: Compute the joint probabilitiespit of all the candidatesbit
with Eq. (6) and Eq. (8);

4: The tracking result̂bt = argmax{pit}, i ∈ [1, ...,N ];
5: Tt ←templates update withTt−1 and b̂t as Algorithm 2.

V. TEMPLATE UPDATE

Template update is a key step in tracking process and
directly influences the results. Fixed templates cannot cope
with the change of the target object because the tracker
cannot accurately track the object when the illumination or
the pose changes, as is inevitable in the real applications.
Therefore, template update is necessary for tracking. Updating
the template frequently, however, will result in the drifting
problem, especially when the occlusion occurs. Many methods
[11, 12, 14, 21] have been proposed to improve the mech-
anism for template update to get better results. Ross and
colleagues [11] proposed an incremental principal component
analysis algorithm to update the sample mean and adjust
the weight of templates with a forgetting factor. In their
algorithm, however, the reconstruction error is supposed to
be a Gaussian distributed with a small variance, which cannot
cope with the partial occlusion well. Jia and Lu [14] generated
a cumulative probability sequence, which leads to a slow
update for old templates and a quick update for new ones to
alleviate the drifting problem. However, when the templates
contain occlusion, old templates with occlusion may be less
important than the new ones. In this paper, we design the joint
tracker with the sparse representation and the MIL classifier
and update the template with the subspace learning. When the
target recoveries from the occlusion, we use the MIL classifier
to track the target and adjust the probability of template update
to avoid the drifting problem.

Many tracking methods agree that old templates are more
accurate than new ones. Hence, the old templates are likely
to stay for a longer time. When occlusion occurs, however,
the new occluded templates are more similar to the current
occluded target, because the occlusion and recovery are all
gradual processes, and an old occlusive template has little

value in terms of tracking the current target whereas the new
occluded template may be useful for the current tracking.
Hence, we classify the templates into two groups according
to occlusion. The group without occlusion is denoted as
Tunocc = {f1, · · · , fn}, wheren is the number of unocclud-
ed templates, and the occluded template set is denoted as
Tocc = {f ′

1, · · · , f
′

n′}, wheren′ is the number of occluded
templates. The templates inTunocc are ordered by time and
the templates inTocc are ordered reversely by time. We give
an increasing interval sequenceI, corresponds to the template
sequence, which is defined as

I =

{

0, · · · ,
i2 + i

K2 +K
, · · · , 1

}

, (11)

where K is the total number of the template sequence
and i is the sequence number. Hence, the generated inter-
val corresponding tofi is [ i−12+(i−1)

K2+K
, i2+i
K2+K

], where i ∈

{1, 2, · · · ,K} and thei-th interval length is 2i
K2+K

. Then,
we generate a rand numberr in interval [0, 2]. Whenr ≤ 1,
we discard one template from the unoccluded template group;
otherwise, from the occluded template group. We can formu-
late this in Eq. (12)

y(r) =

{

i, r ∈ [ i−12+(i−1)
K2

unocc
+Kunocc

, i2+i
K2

unocc
+Kunocc

], 0 < r ≤ 1

j, r ∈ [1 + j−12+(j−1)
K2

occ
+Kocc

, 1 + j2+j

K2
occ

+Kocc

], 1 < r ≤ 2,
(12)

whereKunocc is the number of unoccluded template sequences
Tunocc with time order, andKocc the number of occluded
template sequenceTocc with reverse time order. Eq. 12 indi-
cates that the old templates without occlusion will stay longer,
and conversely, the old occluded templates will be discarded
with a high probability. With this mechanism, occlusion can
be tracked by the new occluded templates and the drifting
problem caused by the target recovering from occlusion can
be solved by the old templates without occlusion and the MIL
classifier.

After selecting the template to discard, we use the combi-
nation of sparse representation and subspace learning, which
is proposed in [14] to update the templates. It should be noted
that, in our method, the occluded or corrupted pixels, which
are denoted ase′, are obtained through the occlusion detection
procedure, whereas in [14], the occluded or corrupted pixels
are unknown. The incremental method proposed in [11] is used
on the tracking results, which can adapt to the appearance
change and maintain the constant feature of the target. The
tracking resultb can be modelled by a linear combination of
the PCA basis vectors and additional trivial templates, which
are employed in [12] as

b = V x+ e′ = [V I], (13)

where b is the candidate bounding box,V is the matrix of
eigenbasis vectors,x is the coefficients ofV , ande′ is the error
vector. Eq. (13) is solved as anℓ1 regularized least squares
problem

min
c
‖b−Dc‖22 + λ‖c‖1, (14)
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where‖.‖1 and‖.‖2 denote theℓ1 andℓ2 norms, respectively,
D = [V I], c = [x e′]T andλ is the regularization parameter.
The template update algorithm is described in algorithm 2.

Algorithm 2 Template update
Input:

Old template setTt−1 = {f1, · · · , fK}, tracking result̂bt,
Ot

ratio occlusion ratio of̂bt, occlusion patchesOt
patch of

b̂t, eigenbasis vectorsV
Output:

New template setTt
1: Generate a random number uniformly in[0, 2];
2: Get templatey(r) to be discarded with Eq. (12), then
T tmp
t = Tt−1 − f

y(r)
t−1 ;

3: Solve equation (14) with occluded patchesOt
patch, and

get x;
4: ft = V x andTt = T

tmp
t ∪ ft.

VI. EXPERIMENTS

Implement details: the proposed algorithm is imple-
mented in MATLAB on one PC with an Intel 2.9GHz
Dual Core CPU and 2GB memory. The discriminative
method MIL&SVM is implemented with a package at site
http://www.kyb.mpg.de/bs/people/pgehler/mil/milsvm.zip. The
ℓ1 sparse minimization problem is solved by SPAMS package
[22] and the regularization constantλ is set to0.01. For each
dataset, the first ten frames are used as the initial frames in
which targets are labelled. In the sampling stage, we resizeall
the foregrounds as(32, 64) in pixels in order to keep unity. The
size of the sampling patch is(16, 16) and the sampling step
is 8 pixels. Thus, each foreground is cut into21 overlapping
patches. In initial tracking, the occlusion ratioOratio is set to
0, andα is set to0.5. In the tracking step, we set the sample
numberN as 200, i.e., in each frame, the candidate set has
200 samples. Our tracker has been tested many times on many
datasets and gives promising results.

Datesets:We use eight challenging sequences to evaluate
our tracking system. These sequences include Faceocc1 [6],
Faceocc2 [6], DavidIndoor [4], Singer, Caviar, Woman, Board
[23] and Stone. Four main challenges of object tracking are
partial and full occlusion, the change of illumination, pose
and scale variation and confused background respectively,and
each of the test datasets has its own focus on these challenges.
For example, Faceocc1 and Faceocc2 focus on the partial or
full occlusion, and their target objects are the people’s heads,
which are occluded by a hat or books. DavidIndoor focuses
on the illumination and posture change. Girl and Board focus
on the pose and scale variation. Caviar and Woman focus on
complicated occlusion and change of pose and scale. Stone
focuses on the confused background challenge.

Trackers: in order to examine the performance of our
tracking algorithm, we use seven state-of-the-art trackers with
the same initial position of the tracking target for comparison
with ours. These tracking algorithms are the fragment-based
(FragTrack) tracking methods [6], incremental visual tracking
method [11],ℓ1 tracker [12], multiple instance learning (MIL)

tracker [4], P-N learning (PN) tracker [5], visual tracking
decomposition (VTD) method [8] and the ASLA algorithm
[14]. We obtain their results by running the trackers with
the source codes provided by the authors with the adjusted
parameters or finding the results from their papers or websites.

Evaluation: two widely used metrics are exploited to e-
valuate the trackers’ performance. The first metrics is relative
center position error (in pixels). The results are obtainedby
calculating the distance from the tracking result center position
to the center position of the ground truth. The distance error of
each frames is shown in Fig. 5 and the average error of all the
frames is shown in Table 1. In Fig. 5, the comparison results
on six datasets are demonstrated by seven different colors(the
red line is ours). From this figure, we can see that our results
are the best of all the six datasets. What is more, our tracker
remains stable along the frame sequence from start to end.
In Table 1, we can see the average center error of the eight
trackers on eight datasets. Our results are marked in bold font.
In order to show the stability of our tracker, we run it several
times on each datasets and give the average results which are
given in the last column of the table. The average error of all
the datasets is shown in the last row of the table, and we can
see our result is the best.

The center location error only checks the deviation of the
center point which cannot detect the variation of pose and
scale. Hence, we also use Pascal VOC overlap ratio as the
second metrics to evaluate our results. This is defined as
Roverlap = (SR ∩ SGT )/(SR ∪ SGT ), whereSR is the result
bounding box area andSGT is the ground truth bounding box
area. Generally, it is considered to be a successful trackerif
the VOC overlap ratio is greater than0.5. The VOC overlap
ratio of the trackers is shown in Table 2 and our results are
marked in bold font. The average results are also given as
in Table 1. We can see our results are the best and most of
the VOC overlap ratios are greater than0.8. The bounding
box area of seven trackers in the original images is shown
in different colors in Fig. 4 and Fig. 6. In Fig. 4 comparison
results on Faceocc1, Faceocc2 and Caviar2 are shown. These
datasets focus on occlusion. We select the frames which are
pre-occlusion case, occlusion case and occlusion disappearing
case. Our results are marked by red bounding boxes, and we
can see the proposed tracker performs well no matter in the
occlusion frames or in the frames after the occlusion. Fig. 6
includes Singer, Car11 and DavidIndoor. These datasets focus
on the variation of illumination, pose and scale which may
have the same influence as occlusion and blur. We select five
representative frames from the result set and we can see our
tracker performs best during the variation. These test results
verify that our joint tracker can be adjusted automaticallyby
the occlusion detection mechanism. When occlusion happens
the generative method can track the object well with occluded
templates and when occlusion disappears, the discriminative
method trained with unoccluded samples can track the object
accurately which can avoid the influence of occlusion.

VII. C ONCLUSION

In this paper, we propose a joint probability tracker adjusted
by an accurate occlusion detection method, and a new tem-
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IVT [11] ℓ1 [12] PN[5] VTD [8] MIL[4] FRAG[6] ASLAS[14] Ours best Ours ave
Faceocc2 10.2 11.1 18.6 10.6 14.1 15.5 3.8 3.8 3.8

Caviar 66.2 65.9 53.0 60.9 83.9 94.2 2.3 1.4 1.4
Woman 167.2 131.6 9.0 136.6 122.4 113.6 2.8 2.5 2.6
Car11 2.1 33.3 25.1 27.1 43.5 63.9 2.0 1.4 1.5
David 3.6 7.6 9.7 13.6 16.1 76.7 3.6 3.2 3.2
Singer 8.5 4.6 32.7 4.1 15.2 22.0 4.8 2.6 2.7
Board 165.4 177.0 97.3 96.1 60.1 31.9 7.3 9.1 9.1
Stone 2.2 19.2 8.0 31.4 32.3 65.9 1.8 1.1 1.6

Average 52.9 56.3 31.7 47.6 48.5 60.4 3.6 3.1 3.2

TABLE I
THE CENTER POSITION ERROR IN PIXELS(CPE)COMPARING WITH OTHER SEVEN TRACKERS ON EIGHT SEQUENCES.

IVT [11] ℓ1 [12] PN[5] VTD [8] MIL[4] FRAG[6] ASLAS[14] Ours best Ours ave
Faceocc2 0.59 0.67 0.49 0.59 0.61 0.60 0.82 0.82 0.82

Caviar 0.21 .020 0.21 0.19 0.19 0.19 0.84 0.90 0.89
Woman 0.19 0.18 0.60 0.15 0.16 0.20 0.78 0.84 0.83
Car11 0.81 0.44 0.38 0.43 0.17 0.09 0.81 0.86 0.85
David 0.72 0.63 0.60 0.53 0.45 0.19 0.79 0.81 0.81
Singer 0.66 0.70 0.41 0.79 0.33 0.34 0.81 0.87 0.86
Board 0.17 0.15 0.31 0.36 0.51 0.73 0.74 0.74 0.74
Stone 0.66 0.29 0.41 0.42 0.32 0.15 0.56 0.66 0.64

Average 0.50 0.41 0.43 0.43 0.34 0.31 0.77 0.81 0.81

TABLE II
THE OVERLAP RATIO COMPARING WITH OTHER SEVEN TRACKERS ON EIGHT SEQUENCES.

 

 

PCA PN VTD MIL FRAG ASLA OURS

(a) Faceocc1

(b) Faceocc2

(c) Caviar2

Fig. 4. Tracking comparison with other six state-of-the-art trackers on the original image. The frames selected for this comparison are one frame in pre-occlusion
case, one frame in severely occlusion case, and one frame in occlusion disappearing case. It is evident that our tacker performs best.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2013 9

0 50 100 150 200 250 300 350
0

5

10

15

20

25

Frame Number

C
en

te
r 

E
rr

or

Caviar1

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Frame Number
C

en
te

r 
E

rr
or

Singer

0 100 200 300 400
0

5

10

15

20

25

30

Frame Number

C
en

te
r 

E
rr

or

Car11

0 100 200 300 400 500 600
0

5

10

15

20

Frame Number

C
en

te
r 

E
rr

or

Stone

0 100 200 300 400
0

5

10

15

20

25

30

Frame Number

C
en

te
r 

E
rr

or

DavidIndoor

 

 

0 200 400 600 800
0

5

10

15

20

25

30

Frame Number

C
en

te
r 

E
rr

or

FaceOcc1

PCA ASLS PN VTD MIL FRAG Ours

Fig. 5. Results for center errors of our tracker and six state-of-the-art trackers on six datasets. The red line shows theresults of our tracker. It is evident that
our track obtains the best results and performs stably.
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(d) Singer

(e) Car11

(f) DavidIndoor

Fig. 6. Tracking comparison of another 3 datasets(Singer, Car11 and Davidindoor). These datasets focus on the variation of illumination, pose and scale,
respectively. It is evident that our tracker performs best.
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plate update mechanism with an occlusion ratio. The novel
occlusion prediction method can accurately detect occlusion
and outputs an occlusion ratio of the current frame. Then,
the joint tracker fused with the generative and discriminative
methods exploits the occlusion information for training and
template update. The generative method uses the occlusion
information to obtain more precise templates, and the discrim-
inative methods are only trained on the unoccluded frames
to maintaining correctness, which can prevent the influence
of occlusion and avoid the drifting problem. In addition, the
occlusion information is used to guide the template update.
Experimental results and comparisons with other state-of-the-
art trackers on large datesets show the superiority of our
method.
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