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Abstract—Visual object tracking methods can be roughly cat- and an on-line classifier to do the tracking. In order to
egorized into generative method or discriminative methodEach  train the dataset more accurately, Babenko and colleadies [
of the two methods has its advantages and negative factors vch used multiple instance learning (MIL) instead of traditibn

may result in occlusion or drifting problems. In order to deal with - . . .
the occlusion and drifting problem better, we combine the tvwo supervised learning methods. With MIL, the training saraple

different methods together by the occlusion information, vinich is ~ ¢an be labelled more precisely, which can alleviate theidgf
obtained from an occlusion detection mechanism. In this pagr, ~problem. In [5], Kalal and colleagues trained a binary dfeess
first, we propose a novel mechanism which can predict occlush  py means of labelled and unlabelled examples. They trained

accurately and sensitively with MIL and SVM classifiers. Seond,  1na classifier on the labelled data and improved it with the
we combine the discriminative method and the generative mébd unlabelled data

in a joint-probability model and use the occlusion information to . o
adjust the weights of the methods, which are complementary. ~Generative methods hold the features by maintaining a
Third, we propose a classified template updating method, in template set, which is used to find the target object in thé nex
which we divide the templates into two groups according to frame, to do visual tracking. The templates can be used with
occlusion information and use opposite probability distrbution pixel or patch format. Adam and colleagues [6] used arlyitrar

to update the two groups. The experiment results of our trackr . .
on several challenging datasets demostrate that our appraches patches, which were not based on the object model, to repre-

is effective and outperforms the state-of-the-art approakes. sent the template object, and each patch voted on the p@ssibl
positions and scales of the object, which were implemented
with an integral histogram data structure [7]. Kwon and col-
leagues [8] decomposed the observation model into multiple
basic observation models by sparse principal componemt ana
|. INTRODUCTION ysis (SPCA). Each basic observation model covers a specific
ISUAL object tracking is a basic task in computer visionappearance of the object. Then spare presentation is used in
Many computer vision applications, such as vehiclgsual tracking. Liu and colleagues [9] proposed a localspa
navigation, video surveillance and automatic drive, cannappearance model and sparse regularized mean-shift teedo th
work without visual object tracking. Visual object tracgine- tracking. The sparse dictionary is static, however, whidym
mains challenging, however, despite the considerablerpssg lead to a drifting problem. Wang and colleagues [10] prodose
made in recent years, because of destabilising factors s@tiracking method from the perspective of mid-level vision
as illumination and scale changes, complicated backgroumdth structural information captured in superpixels. Sabs
occlusions and pose changes in the video sequence. Octlusigently, they used a discriminative appearance model based
and drifting problems are the core issues, and have not bék@ superpixels to distinguish the target and the backgtoun
fully resolved as yet. Besides the improvements in representation models, niogell
Visual object tracking methods can be roughly divided inttethods also developed rapidly. Ross and colleagues [11]
two categories: the discriminative method, which is implgsresented a tracking method that incrementally learns a low
mented with classifiers, and the generative method, whidimensional subspace representation, which is adapteueto t
aims to find the most similar regions. Discriminative method:hanges of the target appearance. To this end, an incrementa
classify the target object from the background to achieee thlgorithm for principal component analysis is implemented
tracking procedure. Grabner and colleagues [1] proposed tandeal with heavy changes in pose, scale, and illumination.
on-line AdaBoost selection method for complex backgrouddei and Ling [12] cast tracking as a sparse approximation
models which exploits information on the background. Avidaproblem. The target candidate is sparsely representeddpstta
[2] cast the tracking problem as a binary classification [gob templates and trivial templates, and the sparsity is aeliev
by combining a number of weak classifiers into a strong ongy solving an/;-regularized least squares problem. Another
which is trained on-line to distinguish the object and thé& tracker with minimum error bound and occlusion detection
background by means of labelled pixels in the next framis. proposed in [13]. The minimum error bound is calculated
Later, Grabner and colleagues [3] upgraded the boostihyg a linear least squares equation and then serves as a guide
method to an on-line semi-supervised boosting method fer particle resampling in a particle filter framework; the
alleviate the drifting problem. They combined a given priopcclusions are detected by investigating the trivial coiffits
in the ¢; minimization. Jia and colleagues [14] developed a
A is with School of Computer Science and Technology, Harbstitute of  gpyst tracking method based on the structural local sparse
Technology Shenzhen Graduate School, China. (e-mail: A&@ktu.cn). . . .
B and C are with, China. (e-mail: ). appearance model by applying an alignment-pooling method
D is with. (e-mail: ). to exploit partial information and spatial information dfet

Index Terms—visual object tracking, occlusion prediction,
template update, joint probability.
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target to handle occlusion. Although the above methods he
made great progress in terms of object tracking, some seri
problems have not been solved completely.

When partial or complete occlusion occurs, the tracker c |
use part of the target appearance and the occlusion infamma
to find the best candidate bounding box. When the occlusi
disappears, the tracker should avoid the influence of t
occlusion and find the right target. In this paper, we pro@ose ! |
occlusion prediction mechanism with MIL and SVM method <l
The observation of the target is sampled by patch, and »
have trained the MIL classifier only on the templates witho

occlusion, to guarantee the accuracy of the occlusion.rat Pre-occlusion Occlusion Occlusion disappearing
Additionally, we present a joint probability model of the
discriminative and generative methods to solve the oamfusi \ [ —OuRs |

and drifting problem. An occlusion ratio is exploited to @aslj
the weights of the two methods. The generative meth@g} 1. Examples of occlusion tracking results. The first isvirom dataset
is implemented with a local structural sparse represeamtatifaceoccl [6], and the second one is from dataset faceoccZljiglnumbers in
model [14], solved by/; minimization. The discriminative "ed a the top left are frame numbers. The left, middie ankt gctures cor-
L respond to the pre-occlusion case, occlusion case andsmtldisappearing
method uses MIL&SVM [15] as a classifier to locate the targehse, respectively. The results of four trackers (FRAGISID[S], MIL[4]
from the background. Finally, we design a novel templated ours) are shown by bounding boxes in different colore. féid bounding
updating method, which uses the occlusion information m;xfasr are the results of our tracker. We can see that ouretran locate
. get accurately when severe occlusion happens ara isfluenced by
update templates dynamically. occlusion after it disappears.
Summarily, our main contribution in this paper is threefold
The first contribution is developing a new prediction medégan
m, which can predict occlusion precisely. The second conttd update the template to alleviate the influence of occiusio
bution is combining the generative and discriminative radth and the probability of drifting. Thus, sparse represeatavith
in a joint probability model, which can handle the drift and local structure can handle occlusion well, although it may
occlusion problems effectively. This joint probability ael be influenced by the occlusion information from the occluded
is implemented with the distribution of positive and negati templates.
patches with the MIL classifier and the spare representatiorDiscriminative methods are also widely used for visual
result from the template matching. The joint probabilitydeb tracking [2-5] which exploit a trained classifier to clagsif
can help us to locate the object more accurately. The thind cahe target from the background and focus on the differences
tribution is proposing a better template update methodclwhibetween the target and the background. Babenko and col-
divides the templates into two groups according to occlusiéeagues [4] trained a classifier with MIL. The MIL method
information and updates them with different mechanisms. Wises bags, which are composed of unlabelled instances. Bags
can see the three pivotal stage pre-occlusion, occlusidn awhich include one or more positive instances are labelled as
occlusion disappearing in Fig. 1 which shows the occlusigositive bags. In contrast, bags which only contain negativ
and drifting problems. instances are labelled as negative bags. In visual obgedk-tr
The rest of this paper is organized as follows. Section Il iag, a rectangular bounding box is commonly used to locate
a short review of related research. Section Il describes ahe target object, but the bounding box may also contain
occlusion detection method. Section IV introduces ourtjoithe background area, for the object may not be a standard
probability model. Section V discusses our template updatectangle and cannot fill the entire bounding box area. Hence
mechanism with occlusion information. Section VI shows thihe patch sampling from the bounding box may also from
experimental details and results. Section VII concludes. part of the background. To deal with this problem, we can
use MIL, in which the patches are treated as instances and a
Il. RELATED WORK group of patches can be regarded as a bag. Thus, the MIL can
Sparse representation has natural advantages in visual train the classifier more precisely. Andrews and colleagues
egorization. Many works have been done to improve th#5] cast the MIL problem as a maximum margin problem,
performance of visual tracking based on sparse repregmmtatvhich is solved by the support vector machine (SVM) learning
[9, 12, 13, 16]. Mei and Ling [12] exploited target templateapproach. Here, we use the MIL&SVM classifier in a new
and trivial templates to represent the candidate target wibrmat with image patches, which can accurately classiéy th
sparse coefficients. The sparsity is achieved by solving target from the background. What is more, it can alleviage th
¢1-regularized least squares problem. With trivial tem@age influence of the background noise in the target bounding box.
parse representation can handle the occlusion problerandia The combination of discriminative and generative meth-
colleagues [14] proposed a structural local sparse appearaods was proposed in [17], Zhong and colleagues devised a
model, which can exploit the spatial information of the &rg sparsity-based collaborative model to integrate the adgms
with an alignment-pooling method. Additionally, they comef holistic discriminative and local generative modules fo
bined incremental subspace learning and sparse repréeantdetter results. They put the two methods together directly,
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however, whereas ours is combined with occlusion inforomati
and the weights of the methods can be dynamically adjust
according to the degree of occlusion. Occlusion infornratio
has been specially used for tracking [13, 18, 19]. In [13
Mei and colleagues proposed an occlusion detection meth
using an efficient; tracker with minimum error bound. They
detected the occlusions by investigating the trivial cogffits

in the ¢, minimization. However, they performed tracking ang
occlusion detection with the same features and method whiff
are relevant to each other, as leads to no further informatic
was obtained from the results. In the proposed algorithm,

IIl. OCCLUSIONPREDICTION METHOD

Occlusion happens when a near object obscures the tarUL

ObleCt and the complete appearance of the target ObJeCDtarmg. 3. Anillustration of the sampling and labelling methéuk picture comes

be_ Obtaine_d frpm_the tWO'dimer_]Sional image, e.g., th(_e targ@m the Caviar3 dataset. The target object is located bygads bounding
object region is filled by the pixels of other objects in théox, which is also called as foreground. We use the patch esampling

icture. In essence, occlusion happens when the pixels rOHnit' which is shown as the smallest grid. The patches shouédlap, as
P PP P d shown in the first row of the foreground area with yellow andebpatches.

the targgt bounding box move into the bounding box regif)’ﬁhe foreground and the surrounding background should betrsampled.

In the visual tracking process, we regard the target objettte foreground patches are regarded as positive samplethatdickground

as foreground and other reagions as the backaround. Wr?ﬁ;hes are regarded as negative samples, which are marigrdem boxes.
9 9 9 . ne row patches are exploited as the labelling unit instawbéch uses the

the background around the foreground appears in the targgi of MIL.

object area, occlusion occurs in the frame sequence as shown

in Fig. 2. Therefore, we can check the foreground region to

find put Whether it contains the surrounding background Eﬂjdition, the patch is more stable than pixels in terms of
predict occlusion. In order to detect the background, se®1ply,o renresentation of certain features. The sampling patch

shouk_j be taken from both foreground and bac_kground. 'ntgﬁould overlap, i.e., the sampling step should be smaller
following paragraph, we introduce the sampling method i, the length of the patch, to maintain the relationship

detail. between the neighboring patches. Overlapping patches can
avoid sampling incomplete local object part. In other words
overlapping patches have a greater probability of covering
a complete local part of the object in one patch other than
dividing a local structure into several patches. We set the
sampling step as half of the patch length and obtain satigfyi
results. In the generative method, the sampling patches can
be used as the templates to compose a sparse dictionary,
which is used to represent the candidate bounding box with
patches to obtain the sparse coefficients. In the discrimema
methods, sampling patches are used to train a classifiechwhi
is used to distinguish the foreground from the background.
The foreground is labelled as the positive sample and the
kground is labell he n iv mple. There i
Fig. 2. An illustration of the occurrence of occlusion, whehe two figures bac Ig ound is atlae ed E;S t Ie ?Igat ﬁ sa pr? he €S a
are picked from dataset Caviar3 [20]. The left picture ismfeall and the problem to be SfO ved before labe |_ng the patc_ €s, however:
second one is frame 75. Red bounding boxes are used to l&fdrdground not all patches in the target bounding box region are on the
region which contains the target object. We can see thateblegbound around target object because the bounding box is rectangular abere
the foreground, which is marked with pink shadows, enterstime foreground he sh fth bi b dard |
area in the second picture and occlusion happens. As we lomlysion is the shape o t e target o J_eCt may nOt_ e a standar re_Ctang €
a gradual process and obstructions must come from the sufirg of the The patches in the bounding box region should be trained as
target object in the previous frames if the occlusion happdinerefore, we g positive sample, but some patches of the bounding box are
can detect occlusion by detecting whether the surroundaniydrounds enter e . .. ..
the bounding box. background area which can be noise for the training of pesiti
sample.

We use a patch that covers a small rectangular image regiofhe multiple instance learning method is trained with in-
with dozens of pixels as the sampling unit. The patch retaistances, which are included in the bags. A bag is labelled as a
the local structure features of the object. It also carridsae positive sample if it includes at least one positive instarand
details about the relative position of the individual p&el a negative sample only includes negative instances. Agtgprd
Hence, patches have more features than isolated pixels.lyinin our method, we regard the image patch as the instance,
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and a group of patches as a bag. Generally, the height of dandidate bounding box sBtas the tracking result. Candidate
target bounding box equals that of the target object, torensiset 5 is generated in the current frame by random sampling
that each row of the patches in the bounding box covers partasbund location of the latest tracking results. In each &am
the object, i.e., one row of patches includes at least onrghpabne same action is done: the known information fr@m

of the target object other than the noise of the backgrouns.used to find the most similar bounding box object reg?ipn
We treat one row of patches as a bag in order to ensure thehe current frame. The tracking result is formulated as:
property that a row patches in the bounding box includes at - . i

least one positive patch, which does not contains noiseeof th bi = a:ggltn 1 (Tria-1) = @D (2)

background. Hence, we can ensure all the bags sampled from . } ) ]
the bounding box are positive samples. where B, is the candidate bounding box set in the current

We also sample negative bags in the background aroJﬁ@met_ and b is thei-th candidate bpunding box region in
the foreground, as shown in Fig. 3. A distance param@ter B¢~ A is the number of samples, ande {1,2---,N}. In
which measures the distance from the center-point of tigetarthe random sampling procedure to obt#ip the velocity of
object to the edge of the negative sampling area, is used to §§ target object can be used to predict the central position
the range of the negative patch sampling area. We can adflsthe sampling area, and the number of samplesan be
the sampling area in the background. In order to maintain gt €xperimentally, which is a balance between efficiency an
consistency, the negative samples are also grouped by a IgUracy-7i.—1 includes the target bounding box regions in
which includes a row of patches. Here, we denote the positi{¢ Previous frames, which can be initial frames or frames
patch, negative patch, positive bag and negative bagty of the tracking resultsF(X) is a measure function, which
p~, b+ andb~, respectively. obtains the feature of a bounding box arealeand X’ # (.

After we obtain positive and negative samples, we use gl_lc,le tracking resulb; is obta_tined by minimizing the feature
SVM(Support Vector Machine) to train the samples and obta§fistance of ¥ beitween regions of template s@.;; and
the classifier. With this classifier, we can classify eactcipat™®9ions of set{b;}. Function ' can be implemented with
of a candidate bounding box. The patches of a candigdyw different methods: one is the generative method, which
bounding box are stored in a patch matf¥; , where M extracts the features frofi.;_1, then uses the features to
is the row number of the patches andthe number of patch find the most similar bounding box aréa in frame t; the
columns. Each patch can be classified as a positive sam@@er is the discriminative method, which uses the data.,
which means it belongs to the target object or as a negatffetrain a clas_smer. The c!asslfler can classify an imagetpat
sample, which means background area around the foregrodfdthe bounding box regior; as the target object area or
As each patclp,, , of P corresponds to a classification resufp@ckground area and the bounding box with the most object
Tm,n, WE Obtain the result matriR,; x. Then, we use Eq. (1) patches is selected as the tracking result. In our algorithen

to detect occlusions. two methods are combined together for tracking.
_ In order to exploit the advantage of the two different
Oratio = %, (1) methods, we fuse the two methods with a joint probability

model, which applies probability to measure the similarity
In Eqg. (1),|p~ | is the number of negative patches aWdV  betweenF'(7;. ;1) and F(b}). In the feature extraction stage,
is the total patch numbe€,..;, is the occlusion ratio which we divide the target region into overlapping patches and use
reflects the degree of occlusion. More importantly, we casatch as the basic unit to represent the features of thergictu
obtain the occlusion position in the bounding box for eachhus the set theory can be used to simplify the formulas. We
patch in the bounding box is matched to a classification tesgbtain the probability”(b:|77.;—1) of bi being the most similar
in R with the same position. We can check the distribution @andidate bounding box t@;.,_; by
the negative patches and find the specific occlusion location . Sei
We train the classifier only with the frames without oc- Py Tie-1) = Ssimilar
clusion or with light occlusion. At the beginning, the iaiti S“’i‘” (3)
frames are exploited to train the classifier and then thesielas = |[£(by) N E(Te—1)|
fier selects the templates to do training which depends on the |F(Ti:e-1)| ’
occlusion ratio. With these unoccluded templates, thesiflas  whereS,;,,i., denotes similar are&,,.,; the total foreground
remains accurate even after occlusions as can alleviate #iea,|F(bi) N F(T1..—1)| the number of similar patches and

drifting problem significantly. |F(T1.4-1)| the total patch number. We use the ratio of the
two area sizes as the probability. In additiohA(77..—1)] is a
V. JOINT PROBABILITY MODEL determined non-zero value. With Eq. (2) and Eq. (3), we can

The procedure for visual object tracking is to use th@Ptain
previous template sefy.; 1, which can be initial bounding F(T1.:—1) — F(b}) = F(Ti.t—1) — F(b)) N F(Ti.e-1),
boxes or boxes of tracking results, to find the position of the F(Tia—1)  FO)NF(Tii-1)
target object in the current frame t. In the initial stagee th x Fhu)  FTaa) (4)
tracker extracts features from the template bounding bea ar 1 P BT, '
or around the bounding box area. In the tracking stage, the (b4 Tr:e-1))-
tracker selects the most similar bounding box reg]'dmm a Thus, Eg. (2) can be written as:
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case, the weight of the discriminative methadwill reduce

b = argmin(1 — P(b}|Ti:e-1)), to a smaller value via the occlusion rati®,.;,, which is
bieBe _ (5) obtained by means of the occlusion detection mechanism.
= argmax P(bt|Ti.1—1). When the occlusion disappears, the generative method may
biEB,

still use the templates with occlusion to represent theetarg

Itis proved that Eq. (2) and Eq. (5) can obtain the samand which may result in the drifting problem. In this case, the
the joint probability can be written a®(bi|7:C_,, ;2. ,) weight of the discriminative method will increase to a
where7,C._, stands for the features obtained by the gener@&/9€r value through the occlusion ratit.;, obtained by the
tive methods and/;D_, stands for the features obtained b>pcc|u5|on detection. Since the discriminative methodased
t— . . . .
discriminative methods fronf1.;_;. The generative methodsonly with the templates without _occlgsmn, it can trqck the
use7;.._1 to hold the features of the target object and chanéﬁ;get accurately when the occlusion disappears. In ceruriy
the features according to the change of the target object B¢ Weight of the discriminative methad is proportional to
dynamical template updating. When occlusion happens, thig occlusion ratid;qtio, i.e.,
best candidate bounding box can be represented by unodclude a < Oratio- @)
and occluded templates. The variation of the target Obje\ﬁheno

) ) . : ratio 1S ClOse to zero, the two methods get the same

itself, however, especially the occlusion, may mislead trWei ht and is set t00.5. When the object is heavily occluded

templates, which will result in a drifting problem. Here, we 9 ) - ) y '
e., Oratio 1S Close to oneq should be set to one. So, we

use the discriminative method to deal with this problen'?:'{efine as
Discriminative methods focus on classifying the boundiog b @ 8
as target object area from the background. That is, they not o= 5(1 + Oratio)- (8)

only use the feature of the target in the bounding box, butwith dynamic adjustment of the weights, the generative
also use the information of the background. Additionally, imethod can track the target along the occlusion and the
our method, the discriminative method only uses the tereplaigiscriminative method track the target when the occlus®n i
without occlusion to train the classifier, which ensurest thaisappearing. The discriminative method holds the redlfea
the classifier is not affected by occlusion. Therefore, the t of the target without any occlusion, which can tell us whem th
different methods are complementary. To this end, we defigeclusion appears or disappears so we can adjust the weights
the fused probability as of the two methods to prevent drifting problems.

i1G D e i1+D The generative method is implemented with adaptive struc-
PTit—1 Trie—1) = (1= ) PO Tri0) + ap(btm:t—(lg)' tural local sparse appearance model proposed in [14], iolwhi

whereP(bi| TS, T2 ), the joint probability, is the weight- each patch pf the target object region can be_ representd{da_byt
g La=1 . Cé)rrespondmg patches of the templates. Wittsparse mini-
ed sum of the discriminative method and generative methag ) . .
. . . mization, we obtain the sparse coefficiedts= [a1, - ,ay]
anda € [0, 1] is the control parameter, which can adjust the S
X . S o a; € [0,1] for each patch. The value af; indicates the
weights of the two methods. With this joint probability, wenc > -~ : ;
. . . X . similarity between the templates and the target object. And
easily assign a bigger weight to the more suitable method for . - s
’ . : .~ . “Wwe can use this value as the probability of a patch being in
special case. We assign a greater weight to the dlscrlmmat{he taraet region. Thus. the probability can be written as
features when the target object area is discriminative filoen 9 gion. ' P y
background, and assign a greater weight to the generatve fe P(bj|7_G )= )
tures when the target object area is similar to the backgtoun e/ -1) = @i
Hence, we can evaluate the two features and assign a greafeerea; is the mean of all the coefficients.
weight to the more discriminative features before the tiragk We use MIL&SVM [15] as the classifier to implement the
step. That means the tracking result depends on the mdigcriminative methods given that the region in the bougdin
distinguishable features. Furthermore, the joint prolitgbi box contains the background area in the edge of the bounding.
model can be used to handle occlusion and drifting problenfdgnce, not all the patches in the bounding box are posi-
In ordinary cases without occlusion, the two methods cah bdive samples, which contain the feature of the target object
track the target object accurately. Therefore, the parames Multiple instance learning can handle this situation wéil.
set nean.5. When occlusion occurs, we can use the occlusigr method, we also use patch as the unit for training. The
prediction information to adjust the weights and guide thdifference is that we sampling both in the bounding box regio
template updating mechanism, as explained in the followirggd the regions around the bounding box. The patches in
paragraph. the bounding box are labelled as positive samples and those
The core idea of the combination methods is that tm;_"ound th_e bounding_box are Ia_beIIed as negativ_e samples. Th
generative method uses all the templates and the disctimgnaaim of this method is to classify the patches in the current
method only uses the templates without occlusion, whicimis ounding box into positive or negative patches. We selet th
implement based on the occlusion detection results. Heee, pounding box with the largest positive patches number as the
generative method is implemented with a local structuresspatracking result. Accordingly, the probability of a boungibox
representation [14], which can track the target accurawegyn being the tracking result can be defined as
when occlusion occurs as the template set contains occluded . Ipt|
POITE ) = (10)
templates that are used to represent the occluded targéisin =1 = I )
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wherep*| is the number of positive patches, apd | is the value in terms of tracking the current target whereas the new
negative patch number. Eg. 10 indicates that a bounding bmecluded template may be useful for the current tracking.
with more positive patches is more likely to be an accurat¢éence, we classify the templates into two groups according
tracking result. The procedure of our joint tracking is désed to occlusion. The group without occlusion is denoted as

in algorithm 1. Tunoce = {f1,++ , fa}, Wheren is the number of unocclud-

ed templates, and the occluded template set is denoted as
Algorithm 1 Joint Tracking Toce = {f],---, f.,}, wheren’ is the number of occluded
Input: templates. The templates if,,... are ordered by time and

The t-th frame f;, templatesT;—; = {f1,...fx}, K is the templates ir7,.. are ordered reversely by time. We give
the number of templates. Number of sampls sample an increasing interval sequen€gcorresponds to the template

radiusR, sampling patch siZeu;, ms) sequence, which is defined as
Output: . P
Tracking resulth;, the updated templates sgt T — {0 A 1} (11)
1: Sample uniformly on the search area with radRiso get K24+ KT Y

the candidate sef;, = {b;},i € [1, ..., N7;

2: For each candidaté, cut the bounding box area to
patches to do classification and gét,;;, of them via
Eq. (1) with occlusion prediction mechanism; K2+K 0 K2+K

. . : i H 21
3: Compute the joint probabilitiesi of all the candidates! {1,2,---, K} and thei-th interval length iz 7. Then,
with Eq. (6) and Eq. (8): we generate a rand numbetin interval [0, 2]. Whenr < 1,

we discard one template from the unoccluded template group;
otherwise, from the occluded template group. We can formu-
late this in Eq. (12)

where K is the total number of the template sequence
and i is the sequence numbgr. Hence, the generated inter-
val corresponding tof; is [=itl=b _i+i ) wherei €

4: The tracking resulb; = argmax{p}}, i € [1,.... N];
5. T, «+templates update witff;_; andb; as Algorithm 2.

‘ 124 (i1 o
y(?") _)u T € [Kg +(;<un1cr’ K2 Li—;{morc]’o <rsl
— noc: 2 _ unoce 2
V. TEMPLATE UPDATE , Te[l+ JKji(IJ(l) 1+ KQJLJ(], 1<r<2,
Template update is a key step in tracking process and (12)

directly influences the results. Fixed templates cannotcoghereK ... is the number of unoccluded template sequences
with the change of the target object because the trackgh.,..c with time order, andK,.. the number of occluded
cannot accurately track the object when the illumination eemplate sequencg,.. with reverse time order. Eq. 12 indi-
the pose changes, as is inevitable in the real applicationates that the old templates without occlusion will staygiem
Therefore, template update is necessary for tracking. tipgla and conversely, the old occluded templates will be dis@arde
the template frequently, however, will result in the driffi with a high probability. With this mechanism, occlusion can
problem, especially when the occlusion occurs. Many metholde tracked by the new occluded templates and the drifting
[11, 12, 14, 21] have been proposed to improve the megbroblem caused by the target recovering from occlusion can
anism for template update to get better results. Ross dnelsolved by the old templates without occlusion and the MIL
colleagues [11] proposed an incremental principal compbnelassifier.
analysis algorithm to update the sample mean and adjusifter selecting the template to discard, we use the combi-
the weight of templates with a forgetting factor. In theination of sparse representation and subspace learninghwhi
algorithm, however, the reconstruction error is supposed it proposed in [14] to update the templates. It should bechote
be a Gaussian distributed with a small variance, which canrthat, in our method, the occluded or corrupted pixels, which
cope with the partial occlusion well. Jia and Lu [14] genedat are denoted as, are obtained through the occlusion detection
a cumulative probability sequence, which leads to a slowocedure, whereas in [14], the occluded or corrupted pixel
update for old templates and a quick update for new onesdre unknown. The incremental method proposed in [11] is used
alleviate the drifting problem. However, when the tematen the tracking results, which can adapt to the appearance
contain occlusion, old templates with occlusion may be lesiange and maintain the constant feature of the target. The
important than the new ones. In this paper, we design thé joiracking resultb can be modelled by a linear combination of
tracker with the sparse representation and the MIL classifible PCA basis vectors and additional trivial templates,chi
and update the template with the subspace learning. When #ne employed in [12] as
target recoveries from the occlusion, we use the MIL classifi
to track the target and adjust the probability of templateaie b=Va+e =[V I (13)
to avoid the drifting problem. ) ] ) ) )

Many tracking methods agree that old templates are mdtgere? is the candidate bounding boX] is the matrix of

accurate than new ones. Hence, the old templates are likBig€nbasis vectors,is the coefficients o¥’, ande’ is the error
to stay for a longer time. When occlusion occurs, howevef€ctor: Eq. (13) is solved as af regularized least squares

the new occluded templates are more similar to the currdPblem
occluded target, because the occlusion and recovery are all )
gradual processes, and an old occlusive template has little mcingchH2 + Alell1, (14)
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where||.||; and||.||2 denote the/; and/y norms, respectively, tracker [4], P-N learning (PN) tracker [5], visual tracking
D= [V I}, c= [z ¢]T and \ is the regularization parameterdecomposition (VTD) method [8] and the ASLA algorithm
The template update algorithm is described in algorithm 2.[14]. We obtain their results by running the trackers with
the source codes provided by the authors with the adjusted

Algorithm 2 Template update parameters or finding the results from their papers or wessit
Input: . Evaluation: two widely used metrics are exploited to e-
Old template se¥;—1 = {f1, -+, fx }, tracking resulb;, valuate the trackers’ performance. The first metrics istireda
O! .1i» Occlusion ratio ofb;, occlusion patcheé);atch of center position error (in pixels). The results are obtaibgd
by, eigenbasis vectorg calculating the distance from the tracking result centesitimm
Output: to the center position of the ground truth. The distancerafo
New template sef; each frames is shown in Fig. 5 and the average error of all the
1: Generate a random number uniform|y[m 2]; frames is shown in Table 1. In Fig. 5, the comparison results
2. Get templatey(r) to be discarded with Eq. (12), thenon six datasets are demonstrated by seven different ctilers(
7;tmz) =T — ty_(?; red line is ours). From this figure, we can see that our results
3. Solve equation (14) with occluded patch@4,,.,, and are the best of all the six datasets. What is more, our tracker
get X; remains stable along the frame sequence from start to end.
4 f,=VzandT; = T U f,. In Table 1, we can see the average center error of the eight

trackers on eight datasets. Our results are marked in batd fo
In order to show the stability of our tracker, we run it seVera
times on each datasets and give the average results which are
VI. EXPERIMENTS given in the last column of the table. The average error of all
Implement details: the proposed algorithm is imple-the datasets is shown in the last row of the table, and we can
mented in MATLAB on one PC with an Intel 2.9GHzsee our result is the best.
Dual Core CPU and 2GB memory. The discriminative The center location error only checks the deviation of the
method MIL&SVM is implemented with a package at site€enter point which cannot detect the variation of pose and
http:/iwww.kyb.mpg.de/bs/people/pgehler/mil/milseip. The scale. Hence, we also use Pascal VOC overlap ratio as the
¢1 sparse minimization problem is solved by SPAMS packagecond metrics to evaluate our results. This is defined as
[22] and the regularization constahtis set t00.01. For each Royeriap = (Sr N Sar)/(SrU Ser), whereSg is the result
dataset, the first ten frames are used as the initial framesbisunding box area anflgr is the ground truth bounding box
which targets are labelled. In the sampling stage, we redizearea. Generally, it is considered to be a successful trai€ker
the foregrounds a2, 64) in pixels in order to keep unity. The the VOC overlap ratio is greater than5. The VOC overlap
size of the sampling patch id6, 16) and the sampling step ratio of the trackers is shown in Table 2 and our results are
is 8 pixels. Thus, each foreground is cut ird overlapping marked in bold font. The average results are also given as
patches. In initial tracking, the occlusion ratig..;;, is set to in Table 1. We can see our results are the best and most of
0, and« is set t00.5. In the tracking step, we set the sampl¢he VOC overlap ratios are greater thérs. The bounding
numberN as 200, i.e., in each frame, the candidate set hasox area of seven trackers in the original images is shown
200 samples. Our tracker has been tested many times on manglifferent colors in Fig. 4 and Fig. 6. In Fig. 4 comparison
datasets and gives promising results. results on Faceoccl, Faceocc2 and Caviar2 are shown. These
DatesetsWe use eight challenging sequences to evalualatasets focus on occlusion. We select the frames which are
our tracking system. These sequences include Faceoccl pgg-occlusion case, occlusion case and occlusion disgpgea
Faceocc? [6], Davidindoor [4], Singer, Caviar, Woman, Bbarcase. Our results are marked by red bounding boxes, and we
[23] and Stone. Four main challenges of object tracking acan see the proposed tracker performs well no matter in the
partial and full occlusion, the change of illumination, posocclusion frames or in the frames after the occlusion. Fig. 6
and scale variation and confused background respectaedy, includes Singer, Carll and Davidindoor. These datasets foc
each of the test datasets has its own focus on these challenge the variation of illumination, pose and scale which may
For example, Faceoccl and Faceocc2 focus on the partiahave the same influence as occlusion and blur. We select five
full occlusion, and their target objects are the peopleadse representative frames from the result set and we can see our
which are occluded by a hat or books. Davidlndoor focusésicker performs best during the variation. These testlisesu
on the illumination and posture change. Girl and Board focwerify that our joint tracker can be adjusted automaticaly
on the pose and scale variation. Caviar and Woman focus the occlusion detection mechanism. When occlusion happens
complicated occlusion and change of pose and scale. Stdéine generative method can track the object well with ocdude
focuses on the confused background challenge. templates and when occlusion disappears, the discrimati
Trackers: in order to examine the performance of oumethod trained with unoccluded samples can track the object
tracking algorithm, we use seven state-of-the-art trexckéth accurately which can avoid the influence of occlusion.
the same initial position of the tracking target for compan
with ours. These tracking algorithms are the fragment-thase VII. CONCLUSION
(FragTrack) tracking methods [6], incremental visual kiag In this paper, we propose a joint probability tracker adjdst
method [11],/; tracker [12], multiple instance learning (MIL) by an accurate occlusion detection method, and a new tem-
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IVT [11] | ¢4 [12] | PN[5] | VTD [8] | MIL[4] | FRAGI6] | ASLAS[14] | Oursbest| Ours ave
Faceocc2 10.2 111 18.6 10.6 141 155 3.8 3.8 3.8
Caviar 66.2 65.9 53.0 60.9 83.9 94.2 2.3 14 14
Woman 167.2 131.6 9.0 136.6 122.4 113.6 2.8 25 2.6
Carll 21 333 25.1 27.1 43.5 63.9 2.0 14 15
David 3.6 7.6 9.7 13.6 16.1 76.7 3.6 3.2 3.2
Singer 8.5 4.6 32.7 4.1 15.2 22.0 4.8 2.6 2.7
Board 165.4 177.0 97.3 96.1 60.1 31.9 7.3 9.1 9.1
Stone 2.2 19.2 8.0 31.4 32.3 65.9 1.8 1.1 1.6
Average 52.9 56.3 31.7 47.6 48.5 60.4 3.6 3.1 3.2
TABLE |

THE CENTER POSITION ERROR IN PIXELECPE)COMPARING WITH OTHER SEVEN TRACKERS ON EIGHT SEQUENCES

VT 11 | ¢ [12] | PN[B] | VID [8] | MIL[4] | FRAGI6] | ASLAS[14] | Oursbest| Oursave
Faceocc2|  0.59 0.67 | 0.49 0.59 0.61 0.60 0.82 0.82 0.82
Caviar 0.21 020 | 021 0.19 0.19 0.19 0.84 0.90 0.89
Woman 0.19 0.18 | 0.60 0.15 0.16 0.20 0.78 0.84 0.83
Carll 0.81 0.44 | 0.38 0.43 0.17 0.09 0.81 0.86 0.85
David 0.72 0.63 | 0.60 0.53 0.45 0.19 0.79 0.81 0.81
Singer 0.66 070 | 0.41 0.79 0.33 0.34 0.81 0.87 0.86
Board 0.17 015 | 0.31 0.36 0.51 0.73 0.74 0.74 0.74
Stone 0.66 029 | 041 0.42 0.32 0.15 0.56 0.66 0.64
Average | 0.50 041 | 0.43 0.43 0.34 0.31 0.77 0.81 0.81
TABLE I

THE OVERLAP RATIO COMPARING WITH OTHER SEVEN TRACKERS ON EIGHSEQUENCES

(c) Caviar2

PCA

PN

VTD

MIL FRAG ASLA

OURS |

Fig. 4. Tracking comparison with other six state-of-thetaackers on the original image. The frames selected ferdbmparison are one frame in pre-occlusion
case, one frame in severely occlusion case, and one framecins@mn disappearing case. It is evident that our tackeiopes best.
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Fig. 5. Results for center errors of our tracker and six stétbe-art trackers on six datasets. The red line showsdbelts of our tracker. It is evident that
our track obtains the best results and performs stably.

(d) Singer

(f) Davidindoor

PN VTD

MIL FRAG ASLA

PCA

OURS |

Fig. 6. Tracking comparison of another 3 datasets(SingarlTand Davidindoor). These datasets focus on the variaidllumination, pose and scale,
respectively. It is evident that our tracker performs best.
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plate update mechanism with an occlusion ratio. The noj&3] X. Mei, H. Ling, Y. Wu, and E. Blasch, “Minimum error
occlusion prediction method can accurately detect oamfusi
and outputs an occlusion ratio of the current frame. Then,
the joint tracker fused with the generative and discrineat

methods exploits the occlusion information for trainingdan[14]
template update. The generative method uses the occlusion

information to obtain more precise templates, and the idiscr

inative methods are only trained on the unoccluded frames
to maintaining correctness, which can prevent the influenfib]

of occlusion and avoid the drifting problem. In additioneth
occlusion information is used to guide the template update.
Experimental results and comparisons with other statdse{-

art trackers on large datesets show the superiority of 6]

method.
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